GENERALIZED n-POISSON BRACKETS ON A SYMPLECTIC MANIFOLD
نویسندگان
چکیده
منابع مشابه
A Note on n-ary Poisson Brackets
A class of n-ary Poisson structures of constant rank is indicated. Then, one proves that the ternary Poisson brackets are exactly those which are defined by a decomposable 3-vector field. The key point is the proof of a lemma which tells that an n-vector (n ≥ 3) is decomposable iff all its contractions with up to n− 2 covectors are decomposable. In the last years, several authors have studied g...
متن کاملDimensional Reduction for Generalized Poisson Brackets
We discuss dimensional reduction for Hamiltonian systems which possess nonconstant Poisson brackets between pairs of coordinates and between pairs of momenta. The associated Jacobi identities imply that the dimensionally reduced brackets are always constant. Some examples are given alongside the general theory.
متن کاملGeneralized Reduction Procedure: Symplectic and Poisson Formalism
We present a generalized reduction procedure which encompasses the one based on the momentum map and the projection method. By using the duality between manifolds and ring of functions defined on them, we have cast our procedure in an algebraic context. In this framework we give a simple example of reduction in the non-commutative setting. Partially supported by the Italian Consiglio Nazionale ...
متن کاملDifferential-geometric Poisson Brackets on a Lattice
The concept of differential-geometric Poisson brackets (DGPB) was introduced in [i] in connection with an investigation of the properties of Poisson brackets of hydrodynamic type [2] and their generalizations. Recall that homogeneous DGPBs of m-th order on a phase space of fields u i @),i = i ..... N,x ~ ~ (in this note we confine attention to the spatially onedimensional case), taking values i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Modern Physics Letters A
سال: 1998
ISSN: 0217-7323,1793-6632
DOI: 10.1142/s0217732398003399